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We propose a new approach to analyze multiclass queueing systems in heavy traffic based on what we consider as fundamental laws
in queueing systems, namely distributional and conservation laws. Methodologically, we extend the distributional laws from single
class queueing systems to multiple classes and combine them with conservation laws to find the heavy traffic behavior of the following
systems: (a) 2GI/G/1 queue under FIFO, (b) ZGI/G/1 queue with priorities, (c) Polling systems with general arrival distributions.
Compared with traditional heavy traffic analysis via Brownian processes, our approach gives new insight to the asymptotics used,
solves systems that traditional heavy traffic theory has not fully addressed, and, more importantly, leads to closed form answers,
which compared to simulation are very accurate even for moderate traffic.

he goal of the paper is to present a new approach for
heavy traffic analysis of multiclass queueing systems.
Starting with a new extension of distributional laws to mul-
tiple classes and combining them with conservation laws,
we find the heavy traffic behavior of the following systems:

1. XGI/G/1 queue under the First-In-First-Out (FIFO)
discipline, in which there are N general renewal processes
in a single server queueing system that has a general ser-
vice time distribution and uses the FIFO discipline. In this
system we derive the joint distributions of the number of
customers in the system and the waiting time distributions
of the various classes.

2. 3GI/G/1 queue in which the various classes have pre-
emptive (or nonpreemptive) priorities. In this system we
use conservation and distributional laws to find the ex-
pected number in the system from each class.

3. 3ZGI/G/1 queue with changeover times and cyclic ser-
vice, in which the server serves the various classes in a
cyclic order, spending time d,, when he moves from class i
to class j (polling systems). In this system we derive the
expected number in the system from each class.

For all the above systems our results lead to closed form
expressions; which even in moderate traffic are very close
to those obtained via simulation. We would also like to
stress that our results are not identical with traditional
heavy traffic results. In contrast with these results, our ex-
pressions yield the same numerical answers only for traffic
intensities extremely close to one. For finite traffic intensi-
ties the two methods differ, with ours being closer to the
exact answer in numerical experiments.

More importantly, we feel that our analysis illustrates
the following general approach in the analysis of queueing
systems: Start the analysis by defining the random vari-
ables of interest. Derive the laws that relate these random
variables from general laws of queueing theory. In this way

we have a complete description of the system, in the sense
that we have a sufficient number of equations and un-
knowns. The only difficulty is that the complexity of the
equations prevents us from solving them exactly. In heavy
traffic, however, we can use asymptotic expansions to find
asymptotically exact closed form expressions. Our ap-
proach has parallels in the physics tradition, in which there
are fundamental laws that fuily describe a physical system,
and lead, using mathematical tools, to a complete solution
to the quantities of interest.

We feel that the proposed approach gives a clear per-
spective of the physics of the system, since it starts with a
complete description of the system for every traffic. Heavy
traffic, then, is nothing more than solving the equations
that describe the system asymptotically.

RELATED WORK

Muiticlass queueing systems are used to model complex
production and service systems with multiple types of cus-
tomers which may differ in their arrival processes, service
requirements, and cost or profit functions. As there are
several important applications of the systems we consider
in telecommunication, computer, transportation, and job-
shop manufacturing systems, there is a huge literature in
analyzing their performance.

Related to System 1 (3GI/G/1 under FIFO) Iglehart
and Whitt (1970) prove heavy traffic limit theorems. In
addition, Fendick, Saksena and Whitt (1989) prove heavy
traffic limits for a more general 2GI/G/1 under FIFO,
where batch arrivals and dependencies are allowed. Our
results can be seen as an alternative derivation of the
heavy traffic behavior of the system, which leads to closed
form expressions that are not identical with those obtained
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in Iglehart and Whitt (1970), but compared with simula-
tion results are very accurate.

Related to System 2 (S2GFIG/1 with priorities) Whitt
(1971) and Reiman and Simon (1990} prove heavy traffic
limits. On the other hand, Gelenbe and Mitrani (1980),
Federgruen and Groenevelt (1988a, 1988b) and Shantiku-
mar and Yao (1992) derive conservation laws for expected
performance measures. While conservation laws lead to
explicit expressions for the performance of systems under
priority policies for systems with Poisson arrivals, the per-
formance for systems with general arrivals is not known.
We find that the distributional laws lead to explicit expres-
sions for the conservation laws in heavy traffic for systems
with general arrivals and thus enable us to analyze the
performance of priority policies.

System 3 (polling systems) has been extensively studied
for the case of Poisson arrivals (see Takagi 1975 for a
survey). Perhaps the most efficient algorithm for the anal-
ysis of polling systems with Poisson arrivals is due to
Sarkar and Zangwill (1989), in which they analyze the sys-
tem by solving a linear system of N equations in N un-
knowns. We generalize their work using distributional laws
and derive the heavy traffic behavior of a polling system
with general renewal arrivals. Recently, Coffman et al.
(1993) proposed an alternative heavy traffic approach, via
Brownian processes, for a polling system with two stations.

Regarding the methodological foundation of the paper,
namely the distributional laws, Haji and Newell (1971) de-
rive the distributional laws for an overtake free single class
system, and for the case of Poisson arrivals Keilson and
Servi (1988, 1990) found that the distributional laws have a
very convenient form that can lead to complete solutions
for some queueing systems.

The approach in the present paper has its origin in the
work of Bertsimas and Nakazato (1995) and Bertsimas and
Mourtzinou (1996), who give exact expressions for systems
involving mixed generalized Erlang arrival distributions
and asymptotically exact heavy traffic results for single
class systems.

The present paper can be seen as the extension of the
distributional laws and their applications to the multiclass
case.

The rest of the paper is organized as follows. In Section
1, we develop the multiclass distributional law. In Sections
2, 3, and 4 we derive the heavy traffic behavior of the
2GI/G/1 under FIFO, 2GI/G/1 with priorities and polling
systems respectively as applications of the distributional
and conservation laws. Finally, in Section 5 we report nu-
merical results, comparing our results with the traditional
heavy traffic approach and simulation.

1. THE MULTICLASS DISTRIBUTIONAL LAW

In this section we first review the single class distributional
law for systems with arbitrary renewal arrival processes,
and then present a generalization of the distributional law
in the multiclass case.
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1.1. A Review of the Single Class Distributional Law

Consider a general queueing system, with a single station-
ary renewal arrival process of rate A. As it will become
apparent later, “the system” may correspond to either a
single queue, or to a queue and a service facility. We
assume that the system satisfies the following conditions:

Assumptions A.

A.l. All arriving customers enter the system one at a time,
remain in the system until served (there is no blocking,
balking or reneging) and leave also one at a time.

A2. The customers leave the system in the order of arrival
(FIFO).

A.3. New arriving customers do not affect the time in the
system for previous customers.

Let N,(t) be the number of customers up to time ¢ for
the ordinary renewal process (where the time of the first
interarrival time has the same distribution as the interar-
rival time). Let N(r) be the number of customers up to
time ¢ for the equilibrium process (where the time of the
first interarrival time is distributed as the forward recur-
rence time of the arrival process).

Then, given that they exist in steady-state, let D be the
stationary time a customer spends in the system, and let C
be the stationary number of the customers in the system,
for a system that satisfies Assumptions A. Let also C~, C*
be the number in the system just before an arrival or just
after a departure, respectively. We denote by Fp(t) =
P{D =t} the distribution function of D and by G(z) =
E[z] the generating function of C.

The single class distributional law can be stated as fol-
lows:

Theorem 1. (Haji and Newell 1971, Bertsimas and Naka-
zato 1995.) For a single class system that satisfies Assump-
tions A.1-A.3, the stationary number of customers, C, and
the stationary system time, D, are related in distribution by:

d
C = N3 (D), equivalently

Gelz) = J K(z, t) dFp (1), (1)
0

where K(z, t) & E[zN%(t)] = Zi_, Z"PIN*(t) = n}.

Similar relations hold for the number of customers in
the system just before an arrival or just after a departure.
Namely,

d d
C =C%=N,(D) equivalently

Ge-(2) =Ge-(2) = j Ko (z, 1) dFp (1), (2)
Q

where K,(z, t) & E[2V®] = 37_, 2"P{N,(t) = n}.
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Figure 1. A possible observation scenario in the case of two customer classes.

1.2. The Multiclass Distributional Law

We now consider a general queueing system, with N
stationary renewal arrival streams of rate A. We allow
different customers classes to have different service re-
quirements and we assume that the system satisfies As-
sumptions A.1-A.3 and the following Assumption A.4.

Assumption A.4. Arrival streams from different classes are
mutually independent.

LetN,(t), N Z‘(t) be the number of customers up to time
t for the ordinary and equilibrium renewal process of
the ith class, respectively. Given that they exist in steady-
state, let D, be the stationary time spent in the system
for class i customers and let C, be the stationary number of
class i customers in the system. Finally let C & 3V, C;
Fp() & PD, < 1} and G¢, c(21,-..5 2v) &
E[25 ...z

The multiclass distributional law can be stated as fol-
lows:

Theorem 2. For a multiclass queueing system that satisfies
Assumptions A.1-A.4,

Ge,, . co(2Z1svnnszy)

N 0 t N
=1+ZJ J I1 &, (z,, x)dK (2, x) dFp (1), (3)

i=1 Jo 0 ;=1
¥

with Kz, £) & E[2".©) = 32_, ZPAN%(t) = n}.

Proof. Let 7 be the time that an observer starts observing
the system. Let 7,, be the arrival time of the n,th customer
of the ith class and D,, be his system time. Note that
within each class, we number customers “looking back-
ward” from the observation epoch, hence, the customer
who is numbered 1 is the customer who arrived most re-
cently. Therefore, 7,,, and D, ,, are ordered in the reverse
time direction. (See Figure 1).

Let T}, & 7— 1, fori=1,...,N,ie., T/ is distrib-
uted as the backward recurrence time (age) of the ith
arrival process, and 7,,, & 7., ., — 7., n; = 2,i.e,, T, Is

the interarrival time of the ith arrival process. The key
observation of the proof is that, because of Assumption
A.2, for an observer to see, at the random observation
epoch 7, at least n; customers of the ith class in the system,
where n, = 1, the n;th customer of the ithclass,i = 1, ...,
N, should still be in the system at time 7. Due to Assump-
tions A.1 and A.2 the event that the n,th customer is in the
system at time 7 is equivalent to the event {D,,, > 7 —
7,’,,‘}. Thus, we obtain forn; = 1,i = 1,..., N that

Ci=nq,...,Cy=ny ifandonlyif
Dip, >7=Tius-- s Dnny =T~ T, - (4)
Therefore,
P{Ci=ny,...,Cy=ny}
=PDyy, >T=Tin> o> DNny > T— T, b

We, then, condition on the type of the customer that ar-
rived first to the system, i.e., the less recent customer and
obtain:

P{CIan,...,CNBnN}

P{r— 7, =max/(t— Tm, ),

i
Mz

i
N

Dy, >1= 1, vi=1,...,N}

I
Mz

i
KX

P{r -1, = max/ (71— Tm, ),

Dip, >7— 70}
“PDyp >7—m, Vj# L
=max, (71— 7,5 ), Dy, > 7= Tip, }.
Since the discipline is FIFO (Assumption A.2),
PD,, >7~1, Vj# iT— T,
= max(r = 7,0), Dip, > 7= T} = 1,

meaning that given the event that the customer who ar-
rived the first to the system, among the set of customers
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{n,j = 1,..., N}, is still in the system at time 7, all
customers {n,j = 1,..., N} are in the system at time .
Therefore,

P{Ci=ny,...,Ch=ny}

N
=> P{r— Tyn, = max(r — *r,‘,,‘) and
=1 J

Dt,n, >T7- Tl,n[}'

Since the system is in steady-state, S, ,, is distributed as the
steady-state system time S,. Moreover, because of Assump-
tion A3, D,,, and 7 — 7, are independent. We further
condition on D, and obtain

P{C1>n1,...,CN2nN}

N o
ZEJ P{n(T—'Tz,n,BT—T/,nI):
=1

0 J#i
T T, < t} dFp, ().

Conditioning next on T — 7, introducing the notation
n
A, (x) A p{r - Tin, sx} = P{ T, + > T, sx},
k=2

and using the independence of  — Tim, for all j (Assump-
tion A.4) we obtain forn, = 1,i=1,..., N

P{Clznl,...,CNanN}

N ® rt N
= E j J H P{T - Tj,nl Sx} dAt,n, (x) dFD, (t)
¢

0 J+#t

N » ft N
= 2 J [ H ‘/11',71J ()C) dAlJl( (x) dFD, (t) (5)
0 JO j#i

We next consider the general case where the random
observer, upon his arrival, does not see any customers
from classes k € & C {1,..., N} in the system, and sees
n, = 1 customers from class i & s{. Similarly with relation
(4), we obtain

IQ&Q(C, =n,) if and only if IQ&Q(D,,,,, >T= T )

Thus, following the derivation of (5), we obtain, for n, = 1,
i & d.

P{l&(cl > n,)}

= 2 J J H Aj,n[ (x) dAt,n, (x) dFD, (t)’ (6)
igd Jo Jo ;isa
J¥1

We next calculate P{C, = n,, ..., Cy = ny} iteratively,
based on (5) and (6) and using the fact that for n, = 0,

P{CI :nl’-'-aclznn

., Cy=ny}

-, 0=, 06,2 n)

Cl+l>nl+1"'

—Pl 0 (Co=np), C =, + L 0.(C = n)}.

k<i—
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Finally, we compute generating functions and, after some
algebra, we find that:

with

K,(z,t) A E[2NV 0] = P{T}, =1}

+ > z”{P{ iR 22 T, <t}
o

n=1

n+1
—P{T*,‘,l + 2T, <t}}. N

=2
Remarks.
1. Note that for the case of a single class (3) reduces to
(1.

2. The generating function of the total number of cus-
tomers, C, in the system can be found if we set z, = z in

3):

N =t N
Ge(z) =1+ 2, f J I1 K,(z, x) dK,(z, x) dFp (1).
0

=1 0 =1
J¥# ( 7)

We define as overtake free multiclass queueing systems
those systems that satisfy Assumptions A.1-A.4 and there-
fore, satisfy multiclass distributional laws. These include

(a) ZGI/G/1 queueing system under FIFO (where we
can define “the system” to be either just the queue or the
queue together with the server),

(b) 2GI/D/s queueing system under FIFO (where we
can define “the system” to be either just the queue or the
queue together with the s servers),

(¢} 2GI/G/s queueing system under FIFO (where we
must define the “the system” to be only the queue, since if
the “system” is the queue together with the s servers over-
taking can take place and therefore Assumption A.2 is
violated),

(d) multiclass queuecing systems with vacations (see
Bertsimas and Mourtzinou 1996, and Keilson and Servi
1990) (where, once again, we can define we can define “the
system” to be either just the queue or the queue together
with the server).

1.3. Asymptotic Forms of the Kernels K,(z, ) and
Kz, 1)

The main contribution of our analysis so far is that we
established a set of relationships between the distributions
of the number of customers in the system and the system
time for a class of systems that satisfy Assumptions A.1-
A.4. These distributional laws relationships are expressed
as integral relationships between the generating function

Copyright © 2001 All Rights Reserved



474 |/ BERTSIMAS AND MOURTZINOU

z=0.1

z=0.8

1 . - . . r

L . L L
5 10 15 20 25 30
time

)
0 5 10 15 20 25 30
tme

Figure 2. The function K,(z, f) for Erlang 16 arrivals.

of the number of customers in the system and the distribu-
tion of the system time. For example, for the single class
system we have that:

o

GC(Z) = J K(Z7 t) dFD(t)’

0

and for multiclass systems we also have

Ge,,. (21,0 52N)

N @® t N
=1+2 J J [l &(z,, x) dK,(z,, x) dFp (¥),
=1 Jo Jo j=1
JFL

where the kernels K(z, t) and K/(z, ) were defined in

Theorem 1 and Theorem 2, respectively.
Since we are going to use these kernels extensively, we
next compute them asymptotically as # — » and z — 1 for
general renewal processes. We use the notation that A(x)

z=0.1

~ r(x) as x — a means that lim,_,, A(x)/r(x) = 1 and
following the asymptotic approach introduced in Smith
(1954) (see also Cox 1962, Ch. 4-6) we obtain (see
Mourtzinou 1995):

Theorem 3. For a renewal process with rate A and square
coefficient of variation c2, asymptotically, as t — © and

z —>1:

9, “f(2),

~ o —Hf(2)
K(z,t)~e )

and K,(z,1)~

where f(z) & M1 — 2) — Y21 — 2)*(cZ — 1).

It is important to notice that the above relationships are
exact for Poisson processes under any traffic intensity.

In order to check the accuracy of our asymptotic
method, we next present some numerical results. In Fig-
ures 2 and 3 the solid line corresponds to the exact value

z=0.8

-

I

. , L
10 15 20 25 30
time

L L
0 5 10 15 20 25 30
time

Figure 3. The function K,(z, t) for Hyperexponential arrivals with c¢2 = 1.5.
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of the kernel K (z, t), obtained via numerical Laplace in-
version, and the dashed line to the asymptotic expansion.
To invert the Laplace transform of K,(z, ¢) we used the
two algorithms in Hosono (1981) and in Abate and Whitt
(1995) which we programmed in Matlab and we got exactly
the same results.

Notice that our expansion is indeed asymptotically exact
as z — 1 and t — «. Moreover, in all the cases we consider
it is exact for ¢ > 20.

We should point out that, according to the line of argu-
ments in Mourtzinou (1995) Proposition 2.2, —f(z) is the
root of 1 — za(s) = 0 as z — 1, where a(s) is the Laplace
transform of the interarrival distribution. In other words,

1~za(—f(2))=0 as z—1. (8)

We will use the above equation extensively in the sequel.

2. THE XGI/G/1 QUEUEING SYSTEM UNDER FIFO

Consider a 3GI/GI/1 queue with N classes of customers.
Class i customers arrive at the system according to an ordi-
nary renewal process of rate A, squared coefficient of varia-
tion cﬁl and Laplace transform of the interarrival times «(s).
Let X, be the random variable corresponding to the service
time of a class i customer. We denote with E[X,] and cfl the
mean and the squared coefficient of variation of X,

Let, also, X} be the backward recurrence time (age) of
the service time of a class { customer, i.e., if at a random
epoch 7 a class 7 customer is in the server, X} corresponds
to the amount of service time this customer has received
up to time 7. Let p, 4 LE[X,Jand p &2 N, p,.

Finally, let W, be the time spent in the queue and S, be
the time spent in the queue and the server for class i
customers, in steady-state. Let Q, be the number of the ith
class in the queue and L, be the number of the ith class in
the queue and the server, given that those quantities exist
in steady-state. Denote, also by Q(L) the steady-state number
of all the customers in the queue (or queue and server).

Our goal for the rest of this section is to evaluate the
performance of the multiclass 3GI/GI/1 queue under
FIFO. Since the system is multiclass we need to calculate
the distribution functions of the individual L,, Q,, S;, and
W,foralli =1,2,..., N, as well as the joint distribution
of all the customers in the system or in the queue. Equiv-
alently in the transform domain we need to calculate
®s5.(5), dw(5), G (2), Go(z) aswellas G . 1 (21,
Z, ..., 2Zy) and GQsz, ,,QN(zl, Z2y iy Zn)e

Let us start with the individual quantities first. As the
service policy is FIFO the multiclass as well as the individ-
ual distributional laws hold if we consider the “system” to
be cither the queue or the queue plus the service facility.
Therefore we have that for alli = 1,2,..., N.

B

GL( (Zl) = J Kt(zts t) dFS, (t)’ and
0

o

Go, (2,) =J K, (z,,t) dFy (1), 9)

0
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with K(z,, t) & E[zN®] = Z7_, Z’P{N(1) = n}. Fur-
thermore, we have that

S, =W,+X,, forall i=1,2,...,N. (10)

Moreover, in order to complete the required number of
equations to be able to form an adequate system (notice
that we have 4N unknowns and only 3N equations so far)
we prove the following theorem.

Theorem 4. In a 3GI/GI/1 queue under FIFO
GL, (Zl )

o

N
= (1 _Zl)|:(1 - P) +21P]J K,(Zl, t) dFW] +X,*(t)
j=

0
JF

+2,Gg (z,), (11)
where K(z,, 1) & E[ZV%®] = 37_, 2'P{N}(t) = n}.

Proof. Denote by B, the event that at the arrival epoch of
a random observer the server is busy by a class i customer.
By applying Little’s law to the server we obtain: P{B,} =
p.

Conditioning on the state of the server at a random
epoch, we have that:

GQ“ 7QN(ZI’ e ,ZN)
N
=(1-p) + 21 p.E[z2' ... z2"|B,], (12)
GLI,- .,LM(ZI’ e ZN)
N
=(1-p)+ 2 z,p,E[22 ...22B,]. (13)

=1

Moreover, because of FIFQ, if at a random observation
time T the server is busy servicing a class i customer (we
call this customer the tagged customer) and there are n,
class j customer waiting in queue, those customers must
have arrived after the arrival of the tagged customer ()
and before 7. In other words, they must have arrived dur-
ing the interval W, + X}, where W, is the stationary waiting
time and X7 is the age of the service time for the tagged
customer.

Notice, however, that we start counting customers upon
the arrival of the tagged customer, that is upon a renewal
epoch of the ith process that constitutes a random inci-
dence for the other arrival processes, due to Assumption
A.4 (see Figure 4).

Consequently, we must have n, renewals of the ith ar-
rival process in T — 7, where the time of the first renewal
has the same distribution as the interarrival time and #,
renewals of jth arrival process (j # i) in the same interval,
where the time of the first renewal has the same distribu-
tion as the forward recurrence interarrival time of the jth
process.

Furthermore, due to FIFO and to the independence of
the arrival processes, W,, X and the arrival processes are
independent, and therefore:
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Figure 4. A possible observation scenario.

P{Qy =ny,...,Qn =ny|B,}
=P{N, W, +X))=ny,...,N, (W, +X7)
=n, ..., N, (W; +X7)=ny} (14)
By taking z-transforms we have:
E[z2...z9%B,]
<[ Koo kG0 a0, 09)
17

where for i = 1,..., N, we define K(z;, t) & E[ZV%©]
and K, (z, £) & E[Z"®].
Substituting (15) into (12) and (13), we obtain

GQ,,...,QN(Zl, cees ZN)

N o]
=(1-p+2p J Ko, (z,, 1)
0

=1

N
[ K, (z), 1) dFw, 4 x2 (1), (16)
Ju
GL,, .,LN(Z1, cee 5 ZN)

N o
=(1—P)+221Pz J Ko,,(Z,-,t)
0

=1

Z

. K](Zj, t) dFW,-JrX,*(t)- (17)

——

H# 1l
-

As special case of the above relations we obtain for i =
1,..., N that

Go (z)=(1—p)+p J’ K, (z,t) dFy, 1 x*(t)
0

N
35 f Kz ) dFy o, (1)
Jj=1 0

~~~~~~ Copyright©-2001 All Rights Reserved

©

GL, (Z) = (1 - P) + zp, J Ko,t(zy t) dFW, +X,*(t)
0

o

N
+ 21 P, J K, (2, t) dFy, . x:(t). (19)
= 0

Combining (18) and (19) we complete the proof. []

Let us note that in the special case of a single class
GI/GI/1 queue (16) and (17) have been proved in Lem-
oine (1974). Moreover, (11) together with (9) and (10)
form an 4N X 4N system of equations that completely
characterizes the individual distributions of L,, Q,, S,, and
W, in the multiclass 3GI/GI/1 system under FIFO. In par-
ticular, the distributions of W,’s can be obtained as follows.

Theorem 5. For a 2GI/GI/1 queueing system under FIFO
the distribution of W, for all i = 1, ..., N satisfy the fol-
lowing N X N system of integral equations:

j K (z,, )[dFw, +x, (t) = zdFy (£)]
0

7=1
)¥

N
- —z,>[<1 —p+3p
: mez,,t) dFy oe®], ()
0

where K(z,, t) & E[z)"™®] = Z7_, Z/P{N (t) = n}.

This is a system of integral equations that can not be
solved analytically and therefore, motivated the following
asymptotic approach.




2.1. Heavy Traffic Behavior of the XGI/G/1 Under
FIFO

Our goal in this section is to examine the behavior of the
3.GI/G/1 under FIFO as Q,, W, — «. For the rest of this
paper we only consider systems in which either the inter-
arrival or the service times are nonarithmetic. It is well
known that for these systems there is a natural parameter
p. the traffic intensity, such that as p — 1, Q, and W, — o«
foralli =1, 2,..., N. Therefore, whenever we say that a
system is operating under heavy traffic conditions, we
mean that p — 1 and therefore, Q,, W, — o for alli = 1,
2,...,N.

Under heavy traffic conditions we prove the following
theorem:

Theorem 6. In a 2GI/GI/1 system under FIFO, in heavy
traffic, the Laplace transforms of the individual waiting
times are given by

¢W, (s)
_ (1 - a,(-s) (1-p)
1-a,(=s)dx (s)+p. (1 —a,(—5))dx(s) 1 —D(s)’
(21)

where a,(s) is the Laplace transform of class i interarrival
times and

(1 = a,(=5))p, dx:(s)
1 - a,(=5)¢x () + p,(1 — a,(=))dx:(s)

N
D(s) 4 3
Jj=1

Proof. We start by noticing that under heavy traffic con-
ditions, Q, = o« foralli = 1, ..., N. From the definition
of Gy(z) 4 Elexp(Q, log z)], we observe that the
behavior of the distribution Q, under heavy traffic con-
ditions is associated with the behavior of its genera-
ting function for —log z, near zero (see also Cox 1962,
p. 14). Moreover, under heavy traffic conditions, L, —
for alli = 1,..., N. Hence, under heavy traffic condi-
tions we are interesting in the asymptotic forms of (20)
asz, = 1.

On the other hand, under heavy traffic conditions W, —
o foralli = 1,..., N and therefore all integrands in (20)
vanish uniess # — oo,

Hence, we take the asymptotic expansion of K,(z,, #)
around both z — 1 and t — « and obtain, from Theorem
3, that foralli =1,2,..., N,

[d)X, (fl(zl)) - Zl]d)Wl (fl(zl))
N
~1=-z){A~-p)+ 21 prdx(filz))dw (fi(z,)|.
J=
JF

Multiplying both sides of the above equation with a,(—~f,(z;))
and using the fact that 1 — z,a,(—f,(z;)) = 0 we get
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[1 - al(—fl(zl))(bX,(fl(zt))]d)W, (fz(zz))
~ (1 - al(_fl(zl)))

N
-[u—pw+§m¢@uxa»w¢ﬁum]
<

TF#F
Setting for each i: s & f(z,), we obtain fori = 1,..., N:

dw, (N1 ~ a, (=) dx, ()]

N

~(1- a,(—S))[(l -p)t 21 P xr(s)dw, (S)}-
J
]

*

The previous equations form a N X N linear system
which can be solved by adding and subtracting (1 —
a,(—5))p,dx’(s)dw,(s). We can then solve for each ¢y (s)
as a function of Y, pdx: ()b (s), from which (21)
follows. []

Having found the transforms of ¢y, (s) we can obtain
ds(s), Go(z) and Gy(z,) for all i = 1,..., N, via
Equations (9)—(11). We can also obtain the asymptotic
(heavy traffic) joint distribution G, (zy,...,2y) and
Gy, .. o071+ zy) using (3) and also the distribution
of the total number of customers in the queue if we set z,
=z foralli = 1,..., N in the formula of the joint
transform of (3, ..., On)-

It is interesting to notice that for Poisson arrival pro-
cesses «,(—s) = A/(—s + A,), so we obtain, as it was
expected (see Kleinrock 1975), the exact expression:

1-p
1- E]IV:] P, ¢)g*(s) ’

ow (5) = i=1,...,N.

We next find closed form expressions for the expecta-
tions of the performance measures, since we will use them
in the next section.

Proposition 1. In a 2GI/G/1 queue under FIFO in heavy
traffic, fori = 1,..., N

jN=l )‘;E[ij] + p]E[X]](Cr%J - 1)

+ %E[X,](c,?, - 1). (22)

Proof. From Little’s law, E[Q,] = AE[W,]. By differentiat-
ing (18) we obtain,

N
E[Q.]1=E[N, (W, + X))] + 2 E[N, (W, + X7)]

J=1

¥

z

1
~ A, P](E[m]+E[X7])+Ep1(C3, - 1)
J=1
Substituting E[X /] = E[X?)/2E[X ] and solving the result-
ing system we obtain (22). [
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Table I
Systems Satisfying Strong Conservation Laws in Steady-State
Performance
System Special Characteristics Measure Evaluation of b
SM/G/1 N-classes nonpreemptive p:E[W] Gelenbe and Mitrani
(1980)
3GI/M/1 N-classes preemptive pE(W] Theorem 8a
3GI/G/1 N-classes nonpreemptive p.E[W)] Theorem 8b
same service
3GI/IG/1 2-classes nonpreemptive p.EIW)] Theorem 8¢

3. THE 3GI/G/1 UNDER PRIORITY DISCIPLINES

So far we have only considered systems under the FIFO
service discipline. There are, however, other service disci-
plines, in particular priority policies, that arise in practical
situations and therefore it is interesting to develop a meth-
odology to analyze performance under such policies.

QOur goal in this section is to use conservation laws that
have been developed in the last decade for multiclass
queueing systems, together with the results of the previous
section in order to analyze explicitly the performance of
priority policies.

Let us first review the conservation laws. Consider a
SGI/G/1 system, and denote by E = {1, 2, ..., N} the set
of all classes and by 2F the set of all subsets of E. Let U to
be the set of all work conserving and nonanticipative poli-
cies (for formal definitions of these policies see Heyman
and Sobel 1982). For any policy « € AU and any class i, we
let x* be the performance measure of class i (i € E)
customers under policy u. We restrict our attention to
performance measures which are expectations. We then
define x* := (x!),e¢ to be the performance vector under
policy u. Finally, for any given permutation 7 of the N
elements of E, we let x] denote the performance measure
of class i under an absolute policy rule that assigns priori-
ties to customer types according to the permutation , i.e.,
type (1) has the highest priority, ..., type m(N) has the
lowest priority.

Then, the following is a summary of the relevant conser-
vation laws results presented in Shantikumar and Yao
(1992).

Theorem 7. If a performance vector x satisfies strong con-
servation laws, i.e., if there exists a set function b: 2 — R,
such that b(9) = 0 satisfying:

S x7=b(A) forall w:{m(1), ..., w(|A])} =4
€4

and forall A C E;
and for any policy u € U,

> x¥=b(A) forall ACE and Y, x!=b(E),
1€4

1EE

then the performance vector of an absolute priority policy
w, {w(1), ..., m(N)} = E, is given by:

x7n = b{{m(1)})
x7o =b({m(1), w(2)}) — b({m(1)})

¥ = bE) — b({m(1), ..., 7(N = 1)}).

The major result about systems that satisfy conservation
laws is that if we know the set function b(+) we are able to
calculate the performance of priority policies; where b(.4)
is the minimal performance X,c 4 x7 over customer classes
in a subset A C E achieved by an absolute priority policy
giving priority to classes in the set A over all other classes
in E — A. Unfortunately the set functions b(*) (and there-
fore the performance of arbitrary policies) are only known
for systems with Poisson arrivals (see, e.g., Gelenbe and
Mitrani 1980). Our contribution in this section is to calcu-
late the set function b(*) in heavy traffic for a variety of
systems 2GI/G/1 that satisfy conservation laws. We note
that conservation laws hold even for multiserver systems
(see Shantikumar and Yao 1992), but we only deal with
2GI/G/1 in this paper.

In Table I below we summarize 2GI/G/1 systems that
satisfy conservation laws. Note that in the last three systems
the set function b(-) is not known. We calculate the set func-
tion b(*), under heavy traffic conditions, in Theorem 8.

Recall that Q, denotes the number of class i customers in
the queue and W, denotes the steady state waiting time of
class i. Furthermore, we denote by p, and E[X] the traffic
intensity and the mean service time, respectively, for the class
i

3.1. Evaluation of the Set Function b{) in Heavy
Traffic

In this section we evaluate the set function b(:) for the
systems presented in Table I in heavy traffic. The idea of
our derivation is that the set function b(A) is insensitive to
any change in the control policy as long as we are re-
stricted to work conserving and nonanticipative policies
that give priority to the classes in set 4 over these classes
in E — A. The distributional laws enable us to evaluate the
performance measures when the service discipline is
FIFO. Therefore, we can assume the FIFO discipline
within 4 and £ — A and then use the distributional laws in
order to evaluate the set function b(-). In this way we will
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be able to find b(*) in closed form in heavy traffic as a
function of A, ¢Z, E[X,], E[X?] and p, for all .

Theorem 8. In a 2GI/G/1 system with customer classes in
E ={1,..., N}, the value of the set function b(A) is given
as follows, for any A C E that satisfies the heavy traffic
condition (i.e., py = Zieq p, — 1):

(a) When preemption is allowed,

Pa EJEA ’\JE[XJZ] + 2JEA pJE[XJ](CHZJ - 1))
2(1 - PA)

b(A) ~ .
(23)

(b) If all customers have the same service requirement
and preemption is not allowed,

PAEIX?] Yiep A, + E[X] 2 jea py(cd — 1)
2(1 - py)

(24)
(c) If there are two customer classes having different ser-
vice requirements and preemption is not allowed,

Pa EIEE A,E[X,z] + E] €A p]E[X]](ng - 1)

b(A) ~
(4) 2(1 —py)

(25)

Proof. Based on the previous discussion we have that for
allA C E:

b(A) = 2 p,E[W,], (26)
1€EA

where E[W,] is the mean waiting time of the ith class under
a policy that gives priority (preemptive or nonpreemptive
depending on the case considered) to the subset 4 and
uses FIFO inside the sets 4 and E — 4. We next evaluate
E[W)] under different assumptions.

(a) If preemption is allowed, the customers in the set 4
are not influenced by customers in E — 4. Hence, we can
evaluate E[W,] by considering a 3GI/G/1 system with
classes just from A, where all customers are served under
the FIFO discipline.

But in (22) we have evaluated E[W] in heavy traffic for
such a system. Substituting to (26) and rearranging terms
we obtain (23).

(b) If all customers have the same service requirement
X and preemption is not allowed, we need to find E[W,],
[ € A, when we give non-preemptive priority to customers
in A over customers in £ — A and within the set 4 we use
FIFO. From Little’s law we obtain:

E[Q.]= NE[W,], i€E. (27)

Let B the event that a random observer finds the server
busy by a class j customer. Clearly, P{B'} = p,J € E.
Then, conditioning on the class a random observer finds in
service, we obtain

E[Q,1= X p,E[Q,|B’], iE€E. (28)

JEE
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First, consider the case where i € 4 and j € E — 4. Due
to the fact that customers in 4 have priority over those in
E — A, we know that when the service of the customer
from class j was initialized there were no customers from
class i present. Therefore, E[Q,|B'] is exactly the expected
number of class i that arrived after the initialization of the
current service and before the arrival of the random ob-
server. Moreover, the arrival of the random observer con-
stitutes a random incidence for both the arrival process of
class i and the current service time. Hence,

E[Q,|B'] ~ E[N7, (X*)] = X\, E[X*],
i€A,jJEE - A, (29)
where E[X*] is the mean backward recurrence time (age)

of the service time distribution.
Next, if we consider classes i, j € A we have from (14) that

E[Q,|B'] = E[N7 (W, + X*)]

= M(E[W, ]+ E[X*]), i,jEA,j*i, (30)
E[Q,|B'] = E[N, (W, + X*)]

~ M (EIW,] + E[X*]) +3(c2 - 1). (31)

Using Equations (27)—(31) we obtain the following system
of equations for i € A:

EW.1 = 3 pEDW,] = pEIX*] + 1 EIX](c], — 1).
J

Solving the above system yields (24).

(c) If there are two customer classes with different re-
quirements, and preemption is not allowed, we follow ex-
actly the proof of case (b) above, but instead of Equations
(29), (30), and (31) we use:

E[Q,|B']= ME[X}], i€EA,jEE - A.
E[Q.|B] = M (E[W,] + E[X3]), i,j€A,j+i,
E[Q.|B']~ A (E[W,] + E[X]]) + 5(c2 - 1).

Using the above equations we form a [4] X |A4]| system,
which, once solved, yields (25). [

Remarks.

1. Tt is important to notice that in part (a) of Theorem 8
we only used the heavy traffic condition to obtain closed
form expressions of E[W]. Alternatively, one can solve,
numerically, the integral equations of Theorem 5, calculate
the expectations substitute in (22) and obtain the exact
formula for b(A4), under any traffic intensity. This is not
true, however, for parts (b) and (c).

2. For the case of Poisson arrivals and under nonpre-
emption (24) and (25) are exact. Moreover, under preemp-
tion, Poisson arrivals, and exponential service times (SM/
M/1), (23) is also exact.

3.2. Performance Analysis of Priority Policies

Consider a 3GI/G/1 system that satisfies conservation laws
under heavy traffic conditions, i.c., the total traffic intensity
p — 1. Suppose that an absolute priority policy = is used
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that gives highest priority to class 1, then to class 2, etc.
Then, from Theorem 7, p,E[W;] = b({1}), pE[W] =
b(N)) — b(N,_y), where N, = {1,..., i}.

In Theorem 8 we evaluated b(N,) in heavy traffic, i.e., as
long as py — 1. Hence, for classes i such that py,  —1
using Theorems 7 and 8 we can obtain asymptotically exact
formulae for E[W,]. However, even if p — 1, py, 1 for
k << N, where N is the total number of classes. Hence, our
method only provides an approximation for classes k such
that py, 1.

For example, consider a 3GI/G/1 system with four cus-
tomer classes, where p, = % - f‘;’ P = % + ’% and p; = p, =
5. Assume that we use an absolute priority policy m = {1,
2, 3, 4}. For such a system asn — ®, p = p(;,34; —> 1 and
also p(12y, P23y — 1. Hence, our method provides as-
ymptotically exact results for E[W,] and E[W;] and ap-
proximate results for E[W,], E[W,]. In Section 5 we
illustrate that this approximation is quite effective as long
as p; = 0.3.

Note that in the case where preemption is allowed we
established, as discussed the first remark after Theorem 8,
an alternative numerical method of obtaining the exact
formula of b(N,) and hence of obtaining the exact perfor-
mance analysis of a 3GI/G/1 system under preemptive
priorities.

4. POLLING SYSTEMS

In this section we consider the classical cyclic order polling
system with general renewal arrival streams, independent
service time distributions and a gated service strategy (see
Takagi 1975). Polling systems are extensions of the
SGI/G/1 queue, since a polling system is a 2GI/G/1 in
which the server follows a gated cyclic policy and there are
changeover times when the server changes classes. Our
contribution in this section is that we find in heavy traffic
the performance of the mean waiting times and the cycle
time by using extensively the distributional laws.

In Section 4.1 we introduce the model and our notation,
while in Section 4.2 we analyze the model and construct a
linear N X N system which once solved yields the expected
performance measures.

4.1. Model Description and Notation

We consider a SGI/G/1 system, in which a single server is
servicing N classes of customers in a cyclic order 1, .. ., N,
1,... under a gated service discipline. One can visualize
this process as if there were N queues, ecach corresponding
to a different class, in a circle and the server services them
cyclically in the following way: if there are N,_, customers
waiting in the i — 1st queue when the server starts servic-
ing this class, then the server processes all N,_; customers,
and after encountering a random delay, d, it starts servic-
ing the class i customers that are waiting in the ith queue.
Notice that the class i — 1 customers that arrive while the
server is servicing the N,_; customers, have to wait for the
next visit of the server to the i — 1st queue, i.e., for a full
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cycle to be completed. Traditionally these systems have
been called polling systems.

We use the notation of Section 2 for the arrival pro-
cesses and service time distributions. Let p & 3%, p, < 1
be the traffic intensity. Notice that for the gated cyclic
policy the stability condition (p < 1) is independent of the
changeover times (see Takagi 1975).

We also introduce the following additional notation:
T*:the time that the server spends servicing the ith class
in the kth visit;

Gf‘ :the station time, i.e., the time interval from the moment
the server starts servicing class i until he starts servicing
class i + 1, during the kth visit;

Ck:the (k — 1)st cycle with respect to class i, i.e., the time
interval from the (k — 1)st entrance to queue i until the
kth entrance to queue i (C&, = C5*1);

AF:the intervisit time with respect to class i, i.e., the time
between the end of the (k — 1)st visit and the beginning of
the kth visit to class i.

Furthermore, we let 0, = lim,_., 6%, C, = lim,_,.. C¥, A, =
lim, .. AF.

4.2. Analysis of the Polling System
The departure point of our investigation is the following

proposition.

Proposition 2. In a 3GI/G/1 polling system where the
server is servicing customers cyclically using a gated policy,
the expected waiting time of class i decomposes in heavy
traffic as follows:

E[T.A,]
E[A,]

E[(A)7]
2E[A,]°

E[W,] ~ EfWFO"] + (32)
where E[WSYS"] is the mean waiting time in a regular
GIl/G/1 queue.

Proof. The distributional laws hold for both the queue and
the queue plus the service facility, thus

G, (z) = J K,(z,t) dFg, (t) and
0

®

Gy, (2) = J K.(z, 1) dFy, (1).
0

Differentiating the above relations twice with respect to z
we obtain (see Bertsimas and Nakazato 1995):

E[L,]= M\E[S.], (33)

E[Q,] = ME[W.], (34)
S,

E[L,2]=A,E[S,]+2A,E[J E[N, (7] dT}, (35)

0
W,

E[QX = ME[W,]+ 2,\,EU E[N, (1] d’r]. (36)
0

Now let B, be the event that at the arrival epoch of a

random observer the server is servicing class i and (B,)° the




complement of B,, ie., the event that the server is either
switching among classes or is servicing class j # i (equiva-
lently the server is in the intervisit period of class ). By
applying Little’s law to the server we have that P{B,} = p,
and hence P{(B,)°} = 1 — p,. By conditioning on the state
of the server we have that:

Go (2) = p,E[z2|B, ]+ (1 = p,) E[z9'|(B,)“],
Gy (2) = p,E[z% "B, ]+ (1 — p,)E[22|(B,)°].
Combining the above relations we obtain

G1,(2) =2Gg (2) + (1 — p)(1 — 2) E[Q,|(B.) ].

Differentiating twice with respect to z and then taking lim-
its as z — 1 we obtain

E[L2] =2E[Q,]+ p, + E[Q]]
- 2(1 - Pz)E[Qz'(Bz)C] (37)

We next calculate E[Q,|(B,)°]. Given the event (B,)°, the
arrival of the random observer occurs during intervisit
time A,. Moreover, as the service policy is gated, the cus-
tomers that are waiting in queue upon the arrival of the
random observer must have arrived during the elapsed
time from the beginning of the cycle C, until the random
observation time which occurred during A,; let us denote
this elapsed time by 4,. Due to the heavy traffic assump-
tions we have therefore that

E[Q,|(B,)] ~ E[N7 (A)|(B,)]
= \,E[4,[(B,)°]. (38)
On the other hand, we have that

EpwﬂwJﬂ=fEkﬂﬂ“Wm=xA&V]
0

‘P{x< A, <x+dx|(B,)%}

= | e mia, = 8.9
0
Ele™¥1a, =, (B,)]

- P{x <A, sx+dx|(B,)°}.

Now, from renewal theory given the fact that there was a
random incidence in an interval A, that has a p.d.f dP, (x),
the new p.d.f. is

Plx <A, <x +dx|[(B,)} = E["A ]

AP, (x).

Moreover, given that {A|(B,)°} = x, the age A} is uni-
formly distributed in [0, x]. Hence,

©

Ek”ﬂwJﬂ=j

x=0

J e S'Pit < T, <t +dt|lA, =x}
=0

: H %e‘“‘du] Fa ] 4Ps .
u=0 t
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Differentiating the above relation we get that

E[(A)?] E[T,A,]
2E[A]  E[A]
Combining (33)-(39) and using S, = W, + X,, we have that:

E[4,|(B)]=

(39)

s,
E[j E[N, (7)] dT] ~E[W,]

0

W,
+ E[J E[N, ()] d*r]
0

Pl 2E[A] 7 E[AT ]

Since S, = W, + X, and W, X, are independent we obtain

W, +X,
EH E[N, (7] df] ~ E[W,]

W,

HMJﬂ+Hﬂmq
(AT ]

_u_pﬁZEMJ

Finally, since W, — o, we can use the fact (Cox 1962)
that E[N,(7)] ~ At + (cZ — 1)/2 and combine it with
(22):
2p1E[XT] + E[X,](Cg’ - 1)

2(1 = p.) ’

E[W,GI/G/l] —

to prove (32). [

Remarks.

1. For Poisson arrival processes the previous relation is
exact (see also the analysis in Takagi 1975) and can be
written as follows:

E[T.A,]

E[W,]=E[WMC] + E[A]

+ E[AT].

It agrees with the decomposition result in Cooper et
al. (1995). Moreover, it generalizes the result for systems
with general renewal arrival processes, under heavy traffic
conditions.

2. A similar decomposition result can be proved in the
case where the server services the queues cyclically and
exhaustively, i.e., the queue at a station must be empty
before the server moves to the next queue. In this case we
can prove, using the same line of arguments as in Proposi-
tion 2, that

E[(A)?]
2E[A]

where E[WS"C/'] is the mean waiting time in a regular
GI/G/1 queue.

The above decomposition result generalizes the decom-
position result in polling systems with Poisson arrivals, in
which W, = WMS" @ A* (see Fuhrmann and Cooper
1985). Our result shows that in heavy traffic the expected
waiting time decomposes even if we have general renewal
arrivals for both the gated and the exhaustive policy.

E[Wz] - E[WIGI/G/I] + (40)
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Based on the above proposition we need to calculate
E[A)], E[TA,), and E[(A)?]. For this reason, we next
present the equations that describe the system.
Fundamental Equations of the System

From the definitions that we introduced in the previous
section we obtain:

0fF =d, .1 + TF, (41)
1—1 N

cf=216f+29,’<'1, (42)
= J=t

Ak=Ck—Tk-"=Ck-0F1+d,,, (43)

Cky 1 =Ck—-0F"1 1 9~ (44)

Before stating the rest of the equations of the system we
should notice that under heavy traffic conditions the in-
tervisit time A¥ — o for all queues i = 1,..., N and visits
k. Hence, under heavy traffic conditions, the moment that
the server enters queue i, constitutes a random incidence
for the ith arrival process.

Now let N* be the number of customers that the server
finds upon his arrival in the ith queue at his kth visit. Due
to the nature of the cyclic model, these customers must
have arrived during the cyclic time C*. According to the
previous discussion, the arrival of the server to queue i
constitutes a random incidence for the arrival process of
the ith queue, under heavy traffic; hence we have that

Nf~N7% (CH.

Moreover, we know that T¥, the time the server spends
servicing the ith queue in the kth visit, is exactly the time it
takes the server to service those N* customers. Hence,

NE(CH
Tk ~ E X, (45)

where X, represents the service time distribution for the
Ith customer among N¥. Therefore,
NI (CH
0k ~d, + X X, (46)
=1

Relations (41)-(46) constitute the equations that char-
acterize the polling system. Based on them we will prove
the following theorem.

Theorem 9. For a gated polling system in heavy traffic the

mean waiting times E[W] forall i = 1, ..., N are given as
1+p, (1+p)C
EW,]~—=—var[C, ]+ ——F——
20 e 2

(¢ — 1ELX,]
T
where the var{C,] satisfy an N X N linear system of Equa-
tions (61).

(47)

Proof. Our strategy is to find E[A,], E[T,A,] and E[(A))%]
as functions of var[C,].

STEP 1. Evaluation of E[A].
Using (42) and (43) and letting k — o we have that in
steady-state:

E[ez]:dt+1 +E[Tl]7 E[A,]ZE[C,]_E[T,]
and FE[C,]= g: El9,]
J=1

Notice that E[C|] is independent of i and we denote it by
C. Therefore,

N
C= 21 E[6,], (48)
.
E[el]:dl+1 +E[Tz]’ (49)
E[A,]=C - E[T.). (50)

Furthermore, from (45) we have that E[T,] ~ MCE[X)] =
p,C, where p, & \E[X]] is the traffic intensity of class i.
Combining the last equation with (50) and (49) we obtain:

E[A1]~C(1_p1) and E[ez]th +po- (51)
Substituting in (48) we, finally, obtain:
- {il dl
C~———. (52)
1- f\‘l—“l P,

STEP 2. Evaluation of E[T,A] and E[(A,)?].
Notice first that from (43) and Step 1 we have:

E[T,A,] = lim E[TF1Ck] - lim E[(TFH?]
= lim E[CFoF 1] + lim E[TF-1C
— lim varf[TF~1] - lim E[TF~ 172
=y +p (1~ p,)C?— var9,], (53)

where we defined v, & lim,_.. Cov[CF, 6% '] and we used
the facts that E[T,] = p,C, and that from (41) we have
var[T,] = var|6,].

On the other hand we have from (43) that var[A%] =
var[C¥] + var[#¥ '] — 2Cov[C¥, 6%~ !]. Taking limits as k
— o and adding and subtracting E[A,]* we have that
E[(AI)Z] = Var[ct] + Var[ez] - 271

+(1 -pz)zéz- (54)

Next, we need to evaluate var[8,]. By differentiating (46)
twice and using heavy traffic expansions, we obtain

E[(6,)*]~d,1E[8,]+ d,.1p,C + plE[(C))?]

+ MLE[(X)2C + A (e — D(EX,]DC.
Now, combining the previous relation with (51) we obtain
var{ 0, ] ~ p? var[C,] + A\, E[(X,)?]C

+ A (c2 — D(E[X,])C. (55)

We are in position now to combine Step 1 and Step 2
together with Proposition 2 to obtain (47). To conclude
the proof of the theorem we need to formulate the N X N
system that yields the var[C,].
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STEP 3. Formulation of an N X N linear system.
To achieve our goal we will evaluate vy, foralli = 1,...,
N, using two different approaches and then we will equate
the results. In particular, we start by taking variances in
both sides of (44),

var[C¥, 1] = var[CF] + var[ 6% ~ '] + var[ 6}]
+ 2(Cov[CF, %] — Cov[Ck, 05~ 1]
— Cov[ 6%, 6%~ 1]). (56)

We then evaluate E[CF, 6%] as follows E[C*, %] =

E[CE[9¥|C F]]. Substituting for E[6|C¥] from (51) we get
E[Ctka le] ~ E[Clk(dl +1 + chzk)]
dl + IE[Clk] + sz[(Clk) 2]'

Using Cov|Z,, Z,] = E[Z,Z,] — E[Z,]JE[Z,), and taking
limits in the previous relation, we obtain

Jim Cov[CE, 6F] ~ p, var[C,]. (57)

Following similar arguments (see Sarkar and Zangwill

1989 for a more detailed derivation for the Poisson case) we
obtain:

lim Cov[6f =", 641~ .. (58)

Substituting (55), (57), and (58) to (56) we obtain

. _ 1+ 2p, + 2p}?
A k gk-17 ! t
. £ lim Cov[C/, 67 '] 24+ ) var[C, ]
1 H,
mvar[C,ﬂ] + 1—:— (59)
and

A CA,(var[X,] + cazl(E[X,])z).

We, now, follow exactly the analysis of the polling sys-
tem with Poisson arrivals presented in Sarkar and Zangwill
(1989) to obtain a second relation for y,. Namely, we use
(42) to obtain that:

1—1
Cov[6f =1, Ck1= 3 Cov[0F 1, 0¥]
J=1

N
+ 2 Covlof ', 6f 1],
j=t

or equivaiently,

-1 N
v, =var[0,]+ Xy, + 2 x,, (60)

j=1 j=i+1

where x, & lim,_. Cov[g% 6% and y, & lim,_.
Cov[g*1! 9"] are linear in var[C,] (see Sarkar and Zang-
will 1989)
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By combining the last equation with (59) we obtain the
following N X N linear system in var[C,]. because they are
identical with the analysis in Sarkar and Zangwill (1989).

1+2 t_zpt
[1’)—'~— 2 EY — E F“)}var[C ]
2(1+p,) J=i+1

- E E<’”)+2F(’+”:|var[C,
[2(1+Pz) J=e+1 o]

- > [Z E<k>+§‘,F Jvar[Ck]

k#ie+1 Lj=1+1
LI Z EQ+ EF("’ (61)
1+ £ J=1+1

where E®) and F®) are recursively given as

Ez(,(j) -~ (az - ple])Ez(O—)l,]

H,_p

—aszz +1+
! " a, 1P -1

fori —j =2,

El(,lj) -~ (al - e]pz)E(k—)I]

—al,f] ~1J+1+fj l]+1 fori—jzza
Et(,l;):(az ‘e]Pz)E 1— 1,
_alfj —1]+1+f] 1]+1 fOfi—j>3,
Ft(,k) (at'—e}pt)F—l _alf] -1;+1+f] t}+1a
fork=0,1,2,...,Nand i — j = 2, where
pz(1+Pz~1) 1 P
al’v&_‘——’ fi~ b ~—_"
Pi-1 a,+1 (1+p,)
2 oifk=j,
EJ(B)NA]’ EJ(’I;),\, {g; else, J
A, py
) — I
RARRCETSE
p](l + 2P;)P;+1 ith =,
2(1+ p))
E(]:')]] PiP;s+1 .
— ifk=j+1,
(1 +p,41) !
0 else, (j=1,2,...,n—1),
F{9 ~ 1 A,, (i=1,2,...,n),
p(1+2p +20)) . .
2(1+p1 itk=j,
(k)
. -4
2(1+p] ifk=j+1,
else,
F(O) }P1+1A + f;P1+1 A
R 1+ 1+p,+1 Jt 1>
G=1,2,...,n—-1),
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Table II
The Expected Waiting Time in a £,/M/1 and an E,/M/1 Queue

The E,/M/1 Queue

The E,/M/1 Queue

p Act. DL HT DL dev HT dev Act. DL HT DL dev HT dev
0.40 0.234 0.042 0.417 —82.05% +78.06% 0.366 0.250 0.500 —31.69% +36.61%
0.50 0.416 0.250 0.625 —39.90% +50.24% 0.600 0.500 0.750 -16.66% +25.00%
0.60 0.707 0.563 0.937 -20.37% +32.60% 0.963 0.875 1.125 -9.14% +28.57%
0.70 1.208 1.084 1.458 —-10.27% +34.50% 1.573 1.500 1.750 —-1.96% +11.25%
0.80 2.228 2.125 2.500 —3.50% +12.21% 2.804 2750 3.000 -1.93% +6.99%
0.90 5.302 5.250 5.625 —0.98% +6.09% 6.550 6.500 6.750 —0.77% +3.05%
FR,, ~ same order of magnitude, although our method is slightly

, ’ closer. Also the resuits for the E,/M/1 are better than the

e,p (1 +2p,)p; 1 ifk =, results for the E,/M/1. This is expected since our method is

2(1+p)) exact for the Poisson case, the closer the arrival process is to
ep o e (1 +2p00 +2p0) a Poisson process, the better our method becomes.
ifk=j+1, . . ..
2(1 + p)) 2(1 + pyi1) Comparing our results with those of the traditional
_ 2(]1‘,ij+1 ) ifk=j+2, heavy traffic we obtain:
P41 22+ 1) —plc2+ 1)
\0 else. E[Wp 1 - E _ pler PlCa
[ DL] [WHT] 2)\(1 _ p)
202 2
. p’(ci +ca) _ E[X]
Remarks _ = (c2-1),

1. The above asymptotic method is exact for a system
with Poisson arrivals under any traffic intensity p < 1, and
we obtain the results presented in Sarkar and Zangwili
(1989).

2. The previous approach can be easily generalized to
allow general random delays d,.

5. NUMERICAL RESULTS

Our goal in this section is to evaluate numerically our
proposed asymptotic method for the following systems:

(1) a single class GI/G/1 queue under FIFO,

(2) a multiclass 2GI/G/1 queue under FIFO,

(3) a multiclass GI/G/1 queue under a strict priority
discipline,

(4) a polling system with general renewal arrivals.
Our goal is to address the following questions:

(a) What is the accuracy of our methods compared with
simulation?

(b) How large p has to be for the results to be accurate?

(c) How does our method compare to the traditional
heavy traffic approach?

5.1. The Single Class GI/G/1 Queue

We first consider a single class queue with the arrival pro-
cess being either an Erlang-2 (E,) or Erlang-4 (E,) and
the service time process being exponential of rate 1. In
Table IT we give the expected waiting time as a function of
the traffic intensity for the simulation (Act.), our method
(DL) and the traditional heavy traffic approach (HT) as
well as the percent deviation of the two methods (dev)
from the simulation.

As expected, the efficiency of both methods increases
with the traffic intensity, and it is of approximately the

2A(1 — p) )

so that as A — 1/E[X], and hence p — 1, the difference
between the two methods remains constant. Moreover, de-
pending on the sign of ¢Z — 1 our method either provides
smaller or larger predictions than the traditional HT ap-
proach. Finally, as p — 1 both E[Wp, ] and E[Wy] — «
and therefore their difference vanishes and both become
exact.

In Table III we present results for a H,/M/1 queue with
unit service rate and interarrival distribution f,(x) =
prie ™ + (1 — p)r,e” ™. Changing the parameters p, 7y, r»
we obtain the following table, where we just indicate the
resulting p, ¢Z, r; and the waiting times.

It is instructive to note that for ¢2 < 1 or ¢ ~ 1 our
method slightly outperforms the HT, although things are
reversed when ¢2 >> 1.

5.2. Three-class GI/G/1 Queue Under FIFO

We consider a GI/G/1 queue under FIFO with three cus-
tomer classes: classes 1 and 3 have E, arrivals while class 2
has E, arrivals. All services are identical and either expo-
nential of rate 1 or hyperexponential with rate 1 and 2=
2 (the parameter r; = 1.5).

Table 111
The Expected Waiting Time for H,/M/1 Queues

p ¢2 Act. DL HT DLdev HTdev r
054 165 148 1867 1528 +255% +33% 025
062 134 238 263 248 +107% +41% 0.25
0.76 1.44 366 405 3.8 +107% +48% 025
0.83 157 615 672 642 +92% +43% 0.25
090 200 1326 14.00 13.50 +56% +18% 1.2
075 104 292 296 299 +13% +23% 0.25
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Table IV
Numerical Results for the Waiting Time in a Three-class FIFO GI/G/1 Queue
Exp. Service Hyp. Service
p P s Ps Act. DL dev HT dev Act. DL dev HT dev
0.5 0.1 0.1 0.3 0.674 —32.41% +81.75% 1.155 —17.52% +92.64%
0.6 0.1 0.2 0.3 1.000 —22.47% +56.20% 1.726 —11.76% +62.95%
0.7 0.2 0.2 0.3 1.605 —13.80% +35.00% 2.758 —7.58% +38.99%
0.8 0.2 0.3 03 2.737 —12.74% +21.03% 4.698 —5.43% +23.72%
0.9 0.3 0.3 0.3 6.297 —1.54% +9.17% 10.770 -1.73% +3.29%

The performance of our asymptotic method as well as
the heavy traffic method as described in Iglehart and Whitt
(1970) is depicted in Table IV as a function of the traffic
intensity. Notice that, once again, our method is closer.
Moreover, it performs better for hyperexponential services
as they increase the waiting time.

Furthermore, it is interesting to notice that for the same
total traffic intensity both methods perform slightly worse
in the case of the multiclass queue than in the single-class
case (see Table II).

5.3. Two-class G//G/1 Queue Under Absolute
Priority Policy

We consider a GI/G/1 system with two classes of custom-
ers, under an absolute priority rule that gives nonpreemp-
tive priority to class 1. The data for the system are
presented in Table V.

The performance of the asymptotic approximation
method is summarized in Table VI as a function of the
vector of traffic intensities {p;, p,}. Notice that as long as
the low priority class is concerned, the method performs
better than in the case of a single class GI/G/1 queue (see
also Table II). This is expected since our asymptotic
method performs better as the waiting time increases. Fur-
thermore, by taking a single class GI/G/1 queue, with any

arrival process as input, adding a second class and impos-
ing a nonpreemptive priority rule, we cause an increase of
the waiting time for the initial class and consequently we
improve the performance of our method in evaluating the
waiting time of that class. Consequently, the accuracy of
the method in evaluating the mean waiting time of the low
priority class is extremely good even when this class has a
low traffic intensity as long as p, is greater or equal to 0.4,
and hence the waiting time for the second priority class is
high.

5.4. Four-class GI/G/1 Queue Under Absolute
Priority Policy

In order to further check the robustness of our method we
consider in this section a GI/G/1 system with four classes
of customers under an absolute priority nonpreemptive
rule. The service time distributions for all nodes are Expo-
nential with unit rate (recall that in order for the strong
conservation laws to hold for such a system we require that
all classes have the same service time distribution) and the
characteristics of the different arrival processes are being
summarized in Table VII:

Table VIII verifies that our method is accurate even
when the traffic intensity is small (for example, we have an
~18.8% deviation for p; = 0.2). Moreover, it constitutes
an accurate estimate of the actual waiting time of class i if

Table V the total traffic intensity for all classes that have priority
Data for a Two-class Priority Queue greater or equal to class / is greater than 0.4.
Interarrival Arrival Service Service 5.5. Ten-node Polling System
Class Distr. Rate Distr. : Rate We consider a polling system with ten nodes under a gated
; Er}ang g 0 SP;( gxponen?ai é cyclic policy. The performance of our method (DL) is pre-
rang TP xponentia sented in Table IX for five different systems. For all the
Table VI
Numerical Results for the Waiting Time in a Two-class Priority GI/G/1 Queue
High Priority Class Low Priority Class
P N Actual DL Dev. of DL P2 Actual DL Dev. of DL
0.6 04 0.542 0416 -23.25% 0.2 1.411 1.25 —11.41%
0.7 0.4 0.625 0.500 —20.00% 0.3 2.094 1.945 —-7.12%
0.7 0.5 0.813 0.700 —13.90% 0.2 2.776 2612 —591%
0.8 0.5 0.914 0.800 —12.46% 0.3 4.566 4.417 —-3.26%
0.8 0.6 1.228 1.125 —8.84% 0.2 6.192 6.042 —2.42%
0.8 04 0.707 0.584 —17.40% 04 3.447 3.334 —3.28%
0.9 0.5 1.005 0.500 —10.54% 0.4 9.923 9.834 —0.90%
0.9 0.6 1.351 1.250 —7.48% 03 13.35 13.34 —0.07%
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Table VII
Data for a Four-class Priority GI/G/1 Queue

Class 1 Arrivals Class 2 Arrivals Class 3 Arrivals

Class 4 Arrivals

System Distr. Rate Distr. Rate Distr. Rate Distr. Rate

A Erlang 2 0.4 Erlang 3 0.2 Erlang 2 0.1 Erlang 3 0.1

B Erlang 2 0.2 Erlang 3 0.1 Erlang 2 0.1 Erlang 3 0.4

Table VIII
Numerical Results for a Four-class GI/G/1 Under Absolute Priorities
Class 1 Class 2 Class 3 Class 4

DL Act. Dev. DL Act. Dev. DL Act. Dev. DL Act. Dev.
A 0.92 1.04 -11.6% 2.08 2.36 —-11.5% 4.44 4.76 —6.6% 8.47 8.94 -5.2%
B 0.69 0.84 —18.8% 0.86 1.17 —26.0% 1.29 1.55 -16.7% 4.10 4.40 -6.9%

systems the service distribution is common for all nodes
and it is Exponential with rate 1 and the delay d, = 2 for
all i. The rest of the data is contained in Tables X and XI.

It is interesting to note that the asymptotic method per-
forms extremely well even when the total traffic intensity is
relatively small (0.4). Furthermore, by comparing the re-

sults we presented for different queueing systems we see
that the performance of our method as a function of the
traffic intensity, in polling systems is better than for any
other system.

Notice that systems A and E are symmetric, where sys-
tems B, C, and D are highly asymmetric. In all cases,
however, the performance of the method is affected only
slightly.

Table IX
Numerical Results for a Ten-nodes Polling System 5.6. A Two-node Polling System
Total Tr.afﬁc D.L. Meap Act_u.al Mgan _ To further check the robustness of our method, we con-
System Intensity Waiting Time Waiting Time Deviation . . . .
sider a 2-node polling system, whose corresponding data is

g 8#8 ;;gg :1,’;2? ggggz/" presented in Table XII.

C 0.90 144.30 143.36 0:655’72 Table XIII presents the performance of our method as a

D 0.94 240.11 237.90 0.928% function, only, of the traffic intensity of both queues.

E 0.85 75.59 75.90 0.410% Notice once again that the the proposed method per-
forms very well, even under moderate traffic, i.e., even for
p=05. ‘

Table X
Data for the First Five Nodes of the Ten-node Polling 5.7. Insights from the Numerical Results
System The following conclusions can be drawn from the numeri-
Node1 Node2 Node3 Noded4 Node3 cal results, as well as from the nature of our method.
Syst. p, €2 p, €2 ps 2 pa 2, ps 2 ' 1. .Our.asymptotic method performs better as the wait-
A 004 172 004 172 004 12 004 12 004 12 ing t{me increases. Thf:refore., the method perforpls sub-
B 005 12 005 172 005 1/2 005 12 005 1/2 stantially better when it predicts that the answer is large.
C 001 12 001 12 001 12 001 1/2 041 12 Under this light it should not be surprising that the method
D 001 12 002 14 001 1/6 002 1/4 041 12 performs extremely well in polling systems, (the presence
E 009 12 009 1/8 009 12 009 1/8 004 172 of delays further increases the waiting time), very well in
priority systems, and satisfactorily for systems under FIFO,
even for moderate traffic. Interestingly, the performance of
Table XI hod is inversel oml to the diffculty of th
Data for the Last Five Nodes of the Ten-node Polling our method is inversely proportional to the difficulty of the
System system.
Node 2 Node Z Node i Node 2 Node 120 Table XII
System  ps  Cag P7 Cay Ps Cay P9 Cay P10 Cay Data for the Two-node Polling System

A 0.04 1/4 0.04 1/4 0.04 1/4 0.04 1/4 0.04 1/4 1 val _ Arrival - Servi

B 005 1/4 005 1/4 0.05 1/4 005 1/4 025 1/4 ploramival e Service Rate d

C 001 1/4 001 14 001 1/4 001 1/4 041 1/4  Node  Distr ate Distr. ate

D 0.01 1/6 0.02 1/6 001 1/2 002 1/4 041 172 1 Erlang 2 N Exponential 1 2

E 0.09 1/8 0.09 12 0.09 1/8 0.09 1/2 0.09 1/8 2 Erlang 4 P2 Exponential 1 2
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Table XIII
Numerical Results for a Two-node Polling System with
Exponential Service

Traffic

_ Intensity Asymptotic Mean Actual Mean

P P P Waiting Time ~ Waiting Time Deviation
05 04 01 5.870 5.807 +1.080%
06 04 02 7.487 7.440 +0.632%
0.6 02 04 7.363 7.333 +0.409%
06 03 03 7.220 7.220 +0.000%
07 04 03 10.384 10.367 +0.164%
0.7 06 0.1 11.800 11.637 +1.229%
0.7 03 04 10.318 10.307 +0.107%
08 04 04 16.438 16.439 +0.000%
08 02 06 17.500 17.170 +1.922%
08 06 02 17.847 17.559 +1.640%
09 03 06 35.969 35.298 +1.900%
09 06 03 36.420 35.632 +2.211%

2. As our method is exact for Poisson arrivals, the closer
the arrival processes are to Poisson, the better the perfor-
mance of the method.
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